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With the use of recently computed diabatic potential energy surfdc€zhem. Phys2001, 115 3085) a full

ab initio calculation was made of the bound energy levels of thePEHHCI van der Waals complex for

total angular momenturd = Y/, 3/, 5/,, and’/,. The dissociation energy, of the complex was found to be

337.8 cmt for J= Y/, and|Q| = Y/, whereQ is the projection ofl on the C-HCI bond axis. The complex

is T-shaped in the ground state and in a series of stretch and bending excited states, with a van der Waals
bond lengthR of ~3.2 A. A series of states with linear geometry were also found, however,| @it 3/,

andR=~ 3.9 A, the lowest of which has a binding energy of 276.1 &rithe rovibronic levels were analyzed

with the help of one-dimensional calculations witfixed at values ranging from 2.5 to 5.5 A and the use

of diabatic and adiabatic potential energy surfaces that both include the importanbdgincoupling. The

states of linear geometry are in qualitative agreement with previous work based on more approximate potential
energy surfaces; the T-shaped states of considerably lower energy were not predicted earlier. Analysis of the
rotational structure and parity splitting of the rovibronic levels leads to the remarkable observation that this

T-shaped complex shows several features typical of a linear open-shell molecule.

Introduction of the CIEP)—HCI van der Waals complex. The method for

] ) o ] the calculation of the van der Waals levels is described under
A chemical reaction that has been studied intensively over g,nd State Calculations. Also, the spiorbit interaction in

_moLe tEa(rj\ a decade,hboth by thebr%? z;nd by expefrimeri*tll,—zo __the CI@P) atom is included in this calculation, with the same
is the hydrogen exchange reaction between a free Cl atom Inassumption as in refs 22 and 23 that the sqirbit coupling

i 2
'ésl’ go_ulr_]l(élp staée avr\]/d tlhe HCI Imo!ecule. Atv.veteLkIy b(t)und constant is not affected by the weak interaction with the HCI
(P) van der yvaals complex 1S present in the entrance: 0 le. we obtain a full solution of the 2D problem with all

and exit channels of this reaction, which is believed to influence . . .
. . six electronic states of CIP)—HCI that correlate asymptotically
the rate and outcome of the react®riTheoretical studies of 5 5 : :
to the %P3, and Py, spin—orbit states of the Cl atom. To

the bound states of this complex were reported by Dubernet .
and Hutso® and. more recentR/ by Zdanskg e%Duybernet understand the character of the bound states on the multiple
’ ! potential surfaces, we also perform a set of rigid bender

and Hutson based their studies on diabatic model potentials, . i .
P calculations with the CHHCI distanceR frozen, to a range of

which they constructed by combining empirical-AdClI, Ar— . o .
Cl, and Ar-Ar potentials with the electrostatic interactions Values. Under Results we discuss and compare our findings with
previous work. In the final section, our conclusions are

between the quadrupole moment of the?B)(atom and the >
dipole and quadrupole of HCI. Zdanska and co-workers Summarized.

calculated adiabatic potential energy surfaces at the multiref-

erence averaged coupled-pair functional (MRACPF) level and Bound State Calculations

reported bound states calculated with and without inclusion of )

an angular first-derivative non-adiabatic coupling term. In their ~ The bound states of CR)—HCI are most conveniently
calculations they fixed the orientation of the intermolecular Calculated in a two-angle embedded body-fixed (BF) frame with
vectorR between the Cl nucleus and the HCI center of mass, thez-axis along the vectdr from the Cl atom to the HCI center

which corresponds approximately, but not exactly, to a neglect of mass. This frame is related to a space-fixed (SF) frame by a
of the overall rotation of the complex. rotation over the angleg (o), which are the polar angles &

Accurate two-dimensional (2D) adiabatic and diabatic po- With respect to the SF frame. The-€H bond axisr has the
tential energy surfaces for the é#)—HCI system were recently ~ Polar anglesd.¢) with respect to the BF framé} is the angle
reported by Kios et & They were obtained from ab initio spin- ~ betweerr andR, which is zero for the linear CIHCI geometry.
restricted coupled cluster calculations with single, double, and Because the HCl vibration has a much higher frequency than
noniterative triple excitations [RCCSD(T)], combined with the vibrations of the CtHCI complex, we froze the HCI bond
multireference configuration interaction including single and lengthr and used the experimental value for the ground state
double excitations (MRCISD) to obtain the non-adiabatic rotational constaniiy = 10.44019 cm? of HCI. The ab initio
coupling coefficient. In the present work we re-expand these potential was calculated for the equilibrium bond length=
diabatic potentials in the form that was derived in refs 22 and 1.275 A. In this representation the Hamiltonian for the nuclear
25—27 and apply them in a detailed study of the bound states motion on the multiple diabatic potential surfaces reduces to
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Bound States of the CI)—HCI van der Waals Complex
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+

whereuag = 17.732802 u is the reduced mass of the complex.

The operators. and S represent the orbital and spin angular
momenta of the Cl atom arjd = A + Sthe total atomic angular
momentum. The splitting between the groupd= 3, and
excitedja = ¥, spin—orbit states of CRP) is Dso= 882.4 cnt?
and the atomic spinorbit coupling constant i& = —2Dso/3

= —588.27 cml. The operatoijs is the rotational angular
momentum of the HCI molecule and the total angular
momentum of the complex. The diabatic states of thérRJ#

HCI complex that correlate with the corresponding states of the

CI(2P) atom are labeled with the quantum numbekrg), where
A=1landu = —1, 0, 1is the projection of on the BFz-axis
R. The potentialsV,,,(R0,¢) are the diabatic interaction

potentials in a two-angle embedded BF frame as described in_
ref 27. The expansion of these diabatic potentials is given by

the following expression:

V, (RO.¢) = Ay V|2 ul= ZC.B,,F,/(G,@vfg’”(R) ©)

The functionsC (6,¢) are Racah normalized spherical harmon-
ics. Note that only functions wittm = x — u' occur in the
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10 n—4

Vi(RO) = Z f(b(O)R)C,R™"C, 1(6.,0) ®)
n=41=Tm|

The electrostatic multipotemultipole contributions start at
= 4, the induction and dispersion contributions stanm at 6,
and f(bR) is a Tang-Toennies damping functio. The
coefficientsC, with n = 4 andn = 5 were not varied in the fit.
They were determined from the quadrupole moment ofRJI(
and the dipole and quadrupole of HCI according to the long-
range formulas in ref 27. Also for the diabatic coupling potential
Vo1 we made a new global fit, with the same procedure as
applied in the fit ofV_1 1. In this case, the exponend§)) and
b(0) in eq 3 were chosen to be independentpéind we used
spherical harmonic€; (6,0) withm = u — u' = 1 in the fits
of eqs 4 and 5, with = |g ranging from 1 to 6. Finally, we
computed the expansion coefficien{s"(R) and " (R) for Ig
values up to 12 according to eq 2 by E;autsegendrge numerical
integration over the fitted potential§_;; and Vp1. These
coefficients obey the relationg “(R) = » (R) and o{"(R)
W R =~y (R = —u@l’ﬁ(R) (see ref 27), so that all
diabatic potential%/ﬂrhu(Rﬁ,O) withu',u = —1, 0, 1 are known.
Because of the large spimrbit coupling in the CRP) atom
it is most convenient for the interpretation of the results to use
a coupled atomic basis set

lja@ A= [(A9)] g0 a0= ZM,#DJSGDH#:SGI jawall (6)
w0

expansion. The same formula (eq 2) with identical expansion o which the spir-orbit term in the Hamiltoniad-$ = (2 —

coefficients holds in a three-angle embedded BF frame gith
= 0% and the potential4, ,(R,0) = V. »(R,0, 0) do not depend
on the anglep in this frame.

)2 — &)/2 is diagonal. The expressiod,u;Soljawalis a
Clebsch-Gordan coefficient. Because= 1 andS = /5, one
finds thatja = ¥, and?®,. The two-angle embedded BF basis

Accurate ab initio results for the diabatic potential surfaces for the complex reads

Ve u(RO) are given in ref 24. To express their anisotropy in
the form of eq 2, we made new fits of the original ab initio
data. For the diabatic potential surfadés andVi 1= V_1_1
we fitted theR dependence to an EspestVernef® function
for each value ofy on the grid of 13 angles used in the ab

initio calculations. Subsequently, we obtained the anisotropic

expansion coefficient@f‘"'“(R) in eq 2 for a givenR from a

. . 2]+ 112
INja@alg e QL= |nE{ . ]
| jAwAmB,wB(elq&) D&j?Q(a!ﬁvo)* (7)

The spherical harmonic4, ..(0,¢) describe the rotation of the

least-squares fit of the values for the 13 angles to a set of HCI monomer with respect to the dimer BF frame and the

spherical harmonic€i,(6,0) withm=u — x' = 0 andlg =

0, 1, ..., 8. For the diabatic potentMl,; ; we made a new global
fit of the ab initio data similar to the fit made in ref 24, but
with the anisotropy expanded in spherical harmoi@gg(0,0)
with m = 2 instead of Legendre polynomial?(cos 0). The
latter are, of course, equal @ (0,0) withm= 0, so this seems
only a subtle difference, but a correct description of the
anisotropy’ according to eq 2 requires thatis fixed atu —

u' = 2. The short-range contribution ¥, ; was written as

V,(RO) = G(R0) exp[d(6) — b(O)R] 3)

where

Imax 3

G(RO) = Z 6iRC,(6.,0) (4)
I=Im[I=

with m= 2 andl = Ig ranging from 2 to 9. The exponerd§))
and b(0) were expanded in Legendre polynomiﬂg(cos 0)
with | =0, 1, 2, just as in ref 24. The long-range contribution
was represented as a damped expansion in poweRslof

symmetric rotor functionﬁ)ﬁ?g(a,ﬁ, 0)* the overall rotation of
the complex. The exact quantum numbérd, A, andS are
omitted from the short notation on the left-hand side. The
angular momentum components on the BExis obey the
relationQ = wa + we. The radial basis functionsl= y(R)
are Morse oscillator type functions defined in ref 30. Formulas
for the matrix elements of the Hamiltonian over this basis are
given in ref 27.

In addition toJ andM, the parity of the states of the complex
under inversioni is a good quantum number. The effect of
inversion on the basis is

TN, jp®p jp0e Q0= (=1 %N j,—0pis— s —Q0 (8)

This property is used to construct a parity-adapted basis

INJ @il g0, | 2|, PU= 2712 [INja@algwg UH

P(=1Y I p—wple— 0= (9)

with parity p. It is customary to define the spectroscopic parity
€, which is related to the total parity ky= p(—1)*~S. Functions
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Figure 1. Diabaticja = %5, |wal = %2 (@),ja = %2, |wal = Y2 (b), andja = Y2, |wa| = %> (c) and adiabatic (df) potential energy surfaces including

spin—orbit coupling for the CRP)—HCI complex. Surfaces a, d, b, and e are given relative to the energy éPihestate of the Cl atom and
surfaces ¢ and f relative to the energy of #g, state.

with paritiese = 1 ande = —1 are denoted witte and f, level for each) with a second-order polynomial shows that there
respectively. might still be bound states fod = 123,. The levels were
Results

converged to within 10* cm* with an angular basis truncated
The bound states of the complex were obtained from a full atjs,, = 15 and a radial basis witfiax = 14. Test calculations

diagonalization of the Hamiltonian matrix. Calculations were With jg,,, = 20 gave levels that did not deviate byL0 6 cm™t
performed ford up to/, inclusive. This does not provide all of ~ from thejg,, = 15 results.

the bound states. A simple extrapolation of the lowest energy It is important for understanding the bound levels ofPR)&
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Figure 2. Cuts through the diabatic potential energy surfaces including-spinit coupling. Cuts a and b are fér= 0° and 90, respectively;
cuts ¢ and d are foR = 3.2 and 3.9 A, respectively.

HCI that one considers also diabatic and adiabatic potential the wave functions of the lowest states of pagtis given in

energy surfaces with the large spiarbit coupling term Tables 1 and 2, foR = 3.2 and 3.9 A, respectively. Many of
included. Diabatic stategawallincluding spin-orbit coupling the curves in Figure 3 nearly coincide fbe= 1/, and3/,, which
are defined, which correlate to the atomic stafjgaall=

( _ ( \ _ indicates that the corresponding bound statesJfer 3/, are
|(A9jawall of eq 6. The corresponding diabatic potentials similar to those ford = Y, except for an additional quantum

V8, (RO) = Tyl V + HdliawaCare the matrix elements of  of overall rotation. In Tables 1 and 2 one can see [atis a
the operator

good approximate gquantum number, also Jor 3/,, and the
A A nearly coinciding curves correspond to states vigh ~ /5.
V+Hgo= Zli,ﬂ'wﬂ'#(Rﬂ) Aul +ALS  (10) The expansion coefficients of these states are indeed very
Hop similar; compare, for example, in Table 1 the lowest state for
= 1 1 e 3
The spin-orbit term is constant and diagonal in this basis. The J B 1/2 W'.th the Iowest state foil_ 3 /2and the second_state for
diagonal elements of the matr? , are plotted in Figure J = 1/, with the third state fod = 3. In Table 2 the first and
. . . ‘A OA . 2 second states fo# = /, are very similar to the second and
la—c. Adiabatic potentials are obtained by diagonalization of _ 3 . A
. . I e . . fourth states ford = 3/,, respectively. The curves in Figure 3
this matrix and plotted in Figure ef. Similar pictures of their that occur ford = 3. but not ford = 1 refer to states with
empirical model potential are shown by Dubernet and Hut3on. Ol ~ ¥ -2 -2
A few of the most relevant cuts through our potential surfaces 1€l T . )
are presented in Figure 2. An interesting feature observed in Figure 3 is that the lowest
One-Dimensional (1D) CalculationsBefore we discuss the ~ e€nergy curve fod = %, and |Q| = %, exhibits two minima,
full 2D calculation of the bound states, it is useful to consider for R= 3.2 and 3.9 A. FoR = 3.2 A the lowest level with)
the hindered internal rotation or bending motion of the HCI = Y2 and|Q| = Y, is the ground state, whereas = 3.9 A
monomer in the complex in a series of calculations with fixed the ground state hak= ¥, and|Q| = 3/,. From the potential
Cl—HCI distanceR. We made such calculations for values of surface cuts presented in Figure 2afio= 0° and in Figure 2b
Rranging from 2.5 to 5.5 A in steps of 0.1 A; the energy levels for 90° one can see that the ground state at 3.2 A corresponds
for J = %, andJ = 3/, are shown in Figure 3. An analysis of to a minimum in the lowest diabatic potential wjth= 3/, and
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Figure 3. Bound state energies calculated withfixed at different
values. Solid lines with crosses correspond te Y/, and dashed lines
with circles toJ = 3/,.

|wal = Y, at the T-shaped structure (cf. Figure 1b). It is this
diabat that causes the secondary minimun® & 90° in the
lowest adiabatic potential energy surface shown in Figure 1d.
In Table 1 one observes that the ground stat® a¢ 3.2 A
indeed has mostly = 3/, and|wa| = Y/, character. The ground
state atR = 3.9 A corresponds to the minimum in the lowest
diabat withja = 3, and|wa| = %/, at the linear structure (see
Figure 1a). This diabat is responsible for the minimund a
0° in the lowest adiabatic potential energy surface shown in
Figure 1d. In Table 2 one observes that the ground stdRe=at
3.9 A indeed has mostl = 3/, and|wa| = 3/ character.

A striking difference between our results and the results of
Dubernet and Hutsdhis that the ground state with the T-shaped

Zeimen et al.

structure andR ~ 3.2 A was not found in their calculation.
Their lowest adiabatic surface including spiorbit coupling
does not display a minimum for the T-shaped geometry. In their
lowest spin-free adiabat they do find a local minimum at the
T-shaped structure, but its relative depth in comparison to the
global minimum at the linear structure is smaller than in our
case (cf. ref 24). Hence, their ground-state resembles the state
of linear geometry that we observe arolRer 3.9 A. Zdanska

et al?® did obtain a secondary minimum for the T-shaped
structure in their lowest adiabat including spiorbit coupling,

but apparently this minimum is not sufficiently deep to support
the T-shaped ground state that we find.

Inspection of the curves in Figure 3 shows an avoided
crossing aroun® = 3.6 A in the lower curves fod = 35, |Q|
= 3/,. The analysis of the bound states in Tables 1 and 2 shows
that this avoided crossing is accompanied by a switclwaf
= 3/, character aR = 3.9 A, which favors the linear GIHCI
structure, tojwa] = Y, character aR = 3.2 A, which favors
the T-shaped structure. The approximate quantum nujpler
mostly 3/, for all of the low-lying states, because of the large
gap between théPs;, and?Py,, spin—orbit levels in the Cl atom.
Still, substantial admixture of thjig = %> component is observed
atR = 3.2 A. It is somewhat surprising th&wa| is a nearly
good quantum number & = 3.2 A, but not atR = 3.9 A,
This can be understood by looking at the potential surface cuts
for R = 3.2 A in Figure 2c, where thiy = ¥, andja = 3/,
curves come close fdt around 90 but the|wa| = Y2 and|wa|
= 3/, curves withja = ¥/ stay far apart fop ~ 90°. In Figure
2d one can see that &= 3.9 A theja = Y/, curve stays far
above thga = 3/, curves, and the latter stay close together for
|wal = Y» and|wa| = 3 over the whole range. The diatom
rotational quantum numbgs is definitely not a good quantum
number; hence, the rotation of HCI is considerably hindered.
Surprisingly, one can clearly distinguish states with gjgeand
states with oddg at R = 3.2 A. Also, |wg| is a nearly good
quantum number aR = 3.2 A but not atR = 3.9 A. The
exception is the ground stateRit= 3.9 A, which we discussed
before. It has a linear geometry ang ~ 0. This state can be

TABLE 1: Energies and Wave Functions from 1D Calculations withR Fixed at 3.2 A¢

J= 1/2 = 3/2

E (cm™?) —362.8373 —350.5348 —217.4902 —203.1811 —362.7005 —351.7134  —350.2129 —315.3444
AE (cm™) 0.2813 —0.0068 0.2870 —0.0063 0.5625 0.0003 —0.0139 0.0000
A=, 0.146 0.146 0.135 0.137 0.146 0.145 0.146 0.147
ja=35 0.855 0.854 0.865 0.864 0.855 0.855 0.854 0.853
|wa| = Y2 0.949 0.952 0.959 0.961 0.949 0.948 0.952 0.955
|wal = 3> 0.051 0.048 0.041 0.039 0.051 0.052 0.048 0.045
QI =1, 1.000 1.000 1.000 1.000 1.000 0.027 0.973 0.000
Q| =3, 0.000 0.000 0.000 0.000 0.000 0.973 0.027 1.000
js=0 0.569 0.007 0.051 0.005 0.569 0.018 0.007 0.000
jg=1 0.046 0.744 0.381 0.058 0.046 0.744 0.744 0.009
=2 0.299 0.055 0.024 0.598 0.299 0.048 0.055 0.825
jg=3 0.036 0.155 0.424 0.023 0.036 0.152 0.155 0.059
js=4 0.037 0.025 0.021 0.264 0.037 0.026 0.025 0.086
j8=5 0.011 0.010 0.082 0.019 0.011 0.009 0.010 0.016
evenjs 0.906 0.091 0.109 0.894 0.906 0.095 0.091 0.914
oddjgs 0.094 0.909 0.891 0.106 0.094 0.905 0.909 0.086
lwe| =0 0.939 0.018 0.951 0.014 0.939 0.044 0.019 0.000
lwg| =1 0.061 0.941 0.049 0.952 0.061 0.938 0.941 0.018
|we| =2 0.000 0.041 0.000 0.034 0.000 0.018 0.040 0.943
|ws| =3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039

a2 The energie€ refer to the levels of paritg; AE = E; — E. is the parity splitting. The contributions of the basis functions with different

guantum numbers are sums of squared coefficients.



Bound States of the CI)—HCI van der Waals Complex J. Phys. Chem. A, Vol. 107, No. 25, 2008115

TABLE 2: Energies and Wave Functions from 1D Calculations withR Fixed at 3.9 A

= 1/2 = 3/2

E (cm™) —255.5538 —227.7538 —193.6043 —305.0698 —255.4367 —231.2392 —227.5604 —182.8490
AE (cm™?) 0.1383 —0.0013 0.1492 0.0000 0.2766 0.0002 —0.0028 0.0000
ja=14 0.013 0.018 0.010 0.001 0.013 0.015 0.018 0.019
ja="% 0.987 0.983 0.990 0.999 0.987 0.985 0.983 0.981
lwal = > 0.599 0.774 0.693 0.069 0.600 0.657 0.774 0.847
|wal = 3/ 0.400 0.226 0.308 0.931 0.399 0.343 0.226 0.154
Q| =1, 1.000 1.000 1.000 0.000 1.000 0.002 0.998 0.000
Q=23 0.000 0.000 0.000 1.000 0.000 0.998 0.002 1.000
js=0 0.445 0.006 0.281 0.220 0.445 0.052 0.006 0.002
js=1 0.272 0.679 0.294 0.410 0.271 0.573 0.679 0.008
j8=2 0.224 0.192 0.173 0.245 0.224 0.169 0.192 0.790
=3 0.055 0.107 0.198 0.085 0.055 0.156 0.107 0.134
js=4 0.003 0.015 0.046 0.027 0.003 0.045 0.015 0.059
js=5 0.001 0.001 0.006 0.009 0.001 0.005 0.001 0.005
evenjg 0.672 0.213 0.501 0.495 0.673 0.266 0.214 0.852
oddjs 0.328 0.787 0.499 0.505 0.327 0.734 0.786 0.148
lwg| =0 0.597 0.012 0.689 0.930 0.598 0.338 0.013 0.003
lwg| =1 0.403 0.767 0.309 0.069 0.402 0.655 0.767 0.013
lwg| =2 0.000 0.221 0.001 0.001 0.000 0.007 0.221 0.836
|we| =3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.148

a2 The energies€ refer to the levels of paritg; AE = E; — E. is the parity splitting. The contributions of the basis functions with different
guantum numbers are sums of squared coefficients.

considered as a Renn€feller system, withjwg| being the calculations for the intermolecular degrees of freedom by
bending angular momentum that for linear triatomic molecules introducing a radial basis of 15 functiong(R), with Nmax =
is commonly denoted 14, as defined in ref 30. The nonlinear paramefys= 3.60
Further understanding of these results can be obtained fromA, D = 430 cnt?, andwe = 34.5 cnt! in this basis were
a view of the angular density distributions plotted in Figures 4 optimized by energy minimizations with smaller values1gfs.
and 5. These distributions are obtained by integrating the The rovibronic levels and parity splittings fdr= 1/, 35, 55,
absolute square of the rovibronic wave functions over all and’/, are given in Tables 3 and 4. Also, the main character of
coordinates except the angle They contain contributions of  the corresponding wave functions is indicated in these tables.

the different electronic spinorbit componentsj£,|wal), which As in the calculations witlR fixed, || is a nearly good quantum
are marked separately. It is clear that the Cl atom and the HCl number and we can sort the energy levels with respef@®to
diatom already have a strong interactiorRet= 3.9 A, but this In agreement with the 1D calculations wilhfixed atR =

affects mostly the diatom by more or less fixing its orientation 3.2 A we find that the ground state corresponds to the second
(is is not a good quantum number anymore). The splitting diabat withja = 3, and|wa| = Y». The density plots fod =
between thga = 1/, and ja = 3, spin—orbit states of the 1/, |Q| =, in Figure 6 show that it has a T-shaped geometry.
CI(2P) atom is almost completely preserved. FRr= 3.2 A The binding energy, of the complex is 337.8 cni for J =
there is also a strong change in the spimbit levels of the CI 5, 12| = Y5, and spectroscopic parigy Note that the lowest
atom anda is no longer a good quantum number. Instead, the adiabatic potential including the spitorbit coupling displays
projections|wal and|wg| on the intermolecular axiR become a local minimum withD = 377 cnT! at the T-shaped geometry
good gquantum numbers, which shows the more rigid characterwith R = 3.2 A, and the zero-point level in the calculations
of the complex. with R fixed at 3.2 A lies at-362.8 cntl. The global minimum

Figure 4 demonstrates again that the complex forms in the in this potential with well deptfDe = 439 cnt?! occurs for the
T-shaped geometry & = 3.2 A. In the ground state, withg linear geometry aRe = 3.9 A. The first state with a linear €l
~ 0 (upper left panel), the diatom orientation is more or less HCI geometry (see Figure 6, lower two panels) is foundXor
fixed around® = 90° by a mixture of basis functions with = 3/, |Q| = 3,, and lies at—276.1 cnTl. This is in good
mainly jg = 0 andjg = 2 (see Table 1). In the first excited agreement with the ground state energy-&#73.7 cn1t that
state, withjwg| ~ 1 (upper right panel), the diatom orientation Dubernet and Hutséf calculated with their empirical model
is equally well localized. We mentioned already that the system potential. Note that this potential does not support the T-shaped
atR = 3.2 A has a strong preference for even or odd values of ground state structure, however, which we find much lower in
js. This is reminiscent of the para/ortho distinction i H energy. Also, the ab initio potential of Zdanska et%atioes
complexes, but quite unexpected as HCI is a strongly hetero-not support the T-shaped ground state structure and, moreover,
nuclear diatom. Even values gfoccur in the ground state and  the well depth and binding energy of the complex are consider-
odd values in the first excited state. Figure 4 also shows that ably smaller in this potential.
the second and third excited states are bending excited states. We observe in Figure 6 that the angular distributions are in
ForR= 3.9 A (Figure 5), the diatom orientation is clearly more good agreement with the results of the 1D calculations
delocalized. This figure contains also the lowest two states with represented in Figures 4 and 5. The states With!/, and|Q|
J =%, and|Q| = 3,. The first one has a linear structure, and = %, in Figure 6 correspond to the T-shaped states computed
the second is delocalized over the linear and T-shaped geom-atR = 3.2 A and the states with= 3/, and|Q| = 3/, in Figure
etries. 6 to the states of linear geometry found ®r= 3.9 A. The

Full Calculation. We performed full two-dimensional (2D)  states with energiels = —293.65 and-279.43 cntt in Figure
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Figure 4. Wave functions squared from 1D calculationsRat= 3.2 A for J = 1/,, integrated over all coordinates excé#ptThe contributions of
the electronic spirorbit statesj@, |wa|) are indicated byd for (¥/2, 35,), * for (?/2, ¥,), and x for (M, ¥2). The energy levels are listed in Table 1.

6 are clearly stretch fundamentals, which have no counterpartyield the spectroscopic parameters listed in Table 5. Two sets
in the 1D calculations witlR fixed. The states with energi&s of such parameters are given for the T-shaped states|@ith

= —215.32 and—197.01 cm?! in Figure 6 are bending =1/, one for the states withg ~ 0 and one for the states with
fundamentals in nice correspondence with the third and fourth |wg| ~ 1. The third set of parameters refers to the states with
states in Figure 4. |Q| = %/, and|ws| ~ 2. All values ofD, from these fits agree

It is clear from Figure 6 that the €HCI complex has two well with the corresponding energies of the 1D calculations at
series of states with a T-shaped geometry gg= 1/, with R=3.2 A. From a comparison of Tables 3 and 2 we extracted

very similar internal motion, one wittyg & 0 that includes the  a stretch zero-point energy of 29 chior the states of linear
ground state at337.80 cn* and one withws| ~1 that starts ~ geometry with|Q| = 3, and we could identify a stretch

at the slightly higher energy of325.07 cmit. In Table 3 one  progression with the first and second excited states lying at 52.6
observes two similar series of levels f| = 3/, one with and 94.2 cm?, respectively, above the linear ground state at
lwg| ~ 1 starting at—326.93 cm* and one with|wg| ~ 2 —276.14 cmL. A fit of this progression to eq 11 yields a set of
starting at—289.53 cnl. Comparison of the energy levels from parameters for the states of linear geometry wighv 0. Again,

the 2D calculation in Table 3 to the levels from the 1D the value ofD. from the fit agrees well with the lowest energy
calculation in Table 1 shows that for each of these series of of the 1D calculation atR = 3.9 A, as it should. The
states the stretch zero-point energy of the complex2s cnt™. corresponding 2D and 1D bending fundamentals of the T-shaped
In the harmonic approximation this corresponds to a stretch strycture in Tables 3 and 1 do not show a simple stretch zero-
frequency of~50 cnr. In the full 2D calculation we could  point energy shift, nor do the levels in Table 3 show a clear
identify stretch progressions with quantum numbers ugp te stretch progression on top of the bending excited levels.

4. Fits of these progressions to the usual formula with anhar- The parity splittings of the levels with= /5, 3, 5/, and/,

monic corrections are presented in Table 4. They agree very well with the results
1 12 1)3 of the fixedR calculation at 3.2 A in Table 1. The largest
E(v) =D, + we(vs + 5) - wexe(ys + 5) + weye(?/s + 5) splittings occur forQ| = /5, and they are nicely proportional
(112) to J + Y,. This simple linear dependence dnt 1/, is well-



Bound States of the CI)—HCI van der Waals Complex J. Phys. Chem. A, Vol. 107, No. 25, 2008117

J=110/=1

T T 0.2

0.2 T T

E= -255.5538 cm™ E= -227.7538 cm™"

0.15 0.15

0.1

0.1

0.05 0.05

% 50 100 150 %
6(degrees) 0(degrees)
0.2 T T T 0.2 T T
E=-193.6043 cm™’ E=-156.7271 cm™"
0.15 0.15F -
0.1 0.1
0.05 0.05
ol )
00 00 50 100 150
0(degrees)
_ 3 _ 3
J = 2 |Q| - 9
T | | 0.5 T T T
1.5H _1_ -1
E=-305.0698 cm E=-231.2392 cm
1 — - -]
0.5 -
0 0 .
0 50 100 150 0 50 100 150

6(degrees) 6(degrees)

Figure 5. Wave functions squared from 1D calculationRat 3.9 A, integrated over all coordinates excépfor J = 1/, (upper four panels) and
for J = 3/, (lower two panels). The contributions of the spiorbit states j, |wal) are indicated byd for (3/2, %/2), * for (35, ¥2), and x for (Y2,
1/,). The energy levels are listed in Table 2.

known for /4 doubling in linear molecule®, and it was also levels withwg = 0 the proportionality constant is on the order
found in CIEP)—HCI by Dubernet and Hutso#.For the lowest of the end-over-end rotational constant (see below). It is
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;I'ABLE 3: Lowest Bound States ofe Parity for J = 1/, up to
/2

lwal |wsl Vo Vs J=17 =3, J=5/, =T
Q| =1
1, 0 0 0 —337.7954 —337.6639 —337.3530 —336.8627
1, 1 0 0 —325.0662 —324.7655 —324.2682 —323.5761
1, 0 0 1 —293.6461 —293.5216 —293.2286 —292.7672
1/, 1 0 1 —279.4261 —279.1678 —278.7404 —278.1451
1, 0 0 2 —254.3481 —254.2233 —253.9404 —253.4994
1, 1 0 2 —237.2569 —237.0075 —236.5930 —236.0137
1, 0 0 3 —220.0136 —219.8837 —219.6032 —219.1720
1/, 0 1 0 —215.3239 —215.2127 —214.9421 —214.5123
1/, 1 0 3 —198.2722 —197.9996 —197.5585 —196.9534
1/, 1 1 0 —197.0106 —196.7601 —196.3435 —195.7608
1/, 0 0 4 —187.2257 —187.0933 —186.8135 —186.3863
1/, 0 1 1 —182.5825 —182.4678 —182.2048 —181.7934
1/, 1 0 4 —-161.6095 —161.3869 —161.0068 —160.4702
Q[ =3/
1, 1 0 O —326.9326 —326.5281 —325.9594
1, 2 00 —289.5309 —289.0560 —288.3921
1, 1 0 1 —286.1012 —285.7228 —285.1937
3, 0O 0O —276.1414 —275.7858 —275.2856
1, 1 0 2 —243.4595 —243.0580 —242.4980
1/, 2 0 1 —241.6363 —241.2266 —240.6514
3, 0O 0 1 —223.5215 —223.2030 —222.7569
1/, 1 1 1 —202.7512 —202.3781 —201.8561
1, 1 0 3 —200.4761 —200.1142 —199.6072
1/, 2 0 2 —198.1769 —197.7996 —197.2593
3, 0O 0 2 —181.9647 —181.6557 —181.2231
1/, 1 0 4 —165.4738 —165.1164 —164.6162
Q| =%/,
1/, 2 00 —292.9108 —292.3186
1, 2 0 1 —250.0382 —249.4693
1, 3 00 —231.1916 —230.5332
1, 2 0 2 —214.2311 —213.6980
1, 2 0 3 —184.7843 —184.2657
1, 3 01 —182.8027 —182.1994
1/, 2 1 0 —161.2700 —160.7185
Q| =7/
1, 3 00 —236.0136
1, 3 01 —192.5597

aEnergies in cm' relative to the energy of CIPsz) and HCI; vy
and vs are bending and stretch quantum numbers.

remarkable, however, that tlhe = 0 states for which we find
this type of parity splitting in CRP)—HCI are not linear but

Zeimen et al.

TABLE 4: Parity Splittings AE = Ef — E¢in cm™?

|wal  |ws] Vb Vs =1, J=3, J="% =T,
Q=1
1, 0 0O O 0.2754 0.5508 0.8261 1.1012
1, 1 0 0 -0.0071 -0.0144 -0.0222 -—0.0306
1, 0 0 1 0.2564 0.5127 0.7689 1.0248
1, 1 0 1 -0.0065 —0.0129 -0.0192 -—-0.0252
1, 0 0 2 0.2245 0.4489 0.6730 0.8967
1, 1 0 2 -0.0031 -—-0.0062 -—0.0095 -—0.0129
1, 0 0 3 0.1919 0.3836 0.5749 0.7657
1, 0 1 0 0.2557 0.5115 0.7672 1.0230
1, 1 0 3 0.0044 0.0067 0.0076 0.0076
1, 1 1 0 -0.0036 —0.0075 -0.0118 -—0.0166
1, 0 0 4 0.1773 0.3544 0.5312 0.7075
1, 0 1 1 0.2158 0.4280 0.6564 0.8709
1, 1 0 4 0.0281 0.0553 0.0809 0.1046
Q=3

1, 1 0 O 0.0003 0.0010 0.0024
1, 2 0 O 0.0000 0.0000 0.0000
1, 1 0 1 0.0001 0.0004 0.0009
3/, 0 0 O —0.0001 —-0.0005 -0.0012
1, 1 0 2 0.0001 0.0003 0.0008
1, 2 0o 1 0.0001 0.0002 0.0005
3/, 0 0 1 0.0000 0.0000 0.0000
1, 1 1 1 0.0002 0.0006 0.0015
1, 1 0 3 0.0004 0.0016 0.0039
1, 2 0o 2 0.0018 0.0044 0.0073
3/, 0 0 2 0.0035 —0.0091 -—0.0080
1, 1 0 4 0.0004 0.0017 0.0041

TABLE 5: Spectroscopic Parameters in cnt! from Fits of
the Stretch Progressions

|wg| || De We WeXe WeYe
0 Y, —362.6657 51.5924 4.0430 0.2754
1 Y —349.4424 49.8261 2.2280 0.0957
2 3/, —315.1439 52.5612 2.6273 0.1378
0 3/, —306.6001 63.6830 5.5315

V(ala+ 1) — op@a £ 1)E@ + 1) — Q(Q £ 1)) x

a0 1n + 5[0+ 3 ReeRT "012)

and they cause a first-order splitting between the functions of
e andf parities, which would otherwise be degenerate. Equation
12 shows that this splitting should indeed be proportional to

have a T-shaped geometry. Another characteristic feature is thatt */2, with a proportionality constant that isj2(+ /) times

the parity splitting is much smaller for the levels withg| =
1. Also, these smaller splittings are proportionalJtet /5,
except for the second stretch overtone where spmg= 3/,
character mixes into the main|wa| = %/, state.

All of these parity splitting characteristics can be understood
by considering the Hamiltonian in eq 1 and the parity-adapted
basis in eq 9. From the latter it follows that the energy difference
between functions witle andf parities is caused by a coupling
between the basis components withwafws, Q) and
(—wa,—ws,—R). The term in the Hamiltonian that is responsible
for this coupling is the Coriolis coupling operate@(ja + jg)+J/
(2uasR?) and, in particular, the step-up and step-down terms
with 13+ and{,J~ in this operator. The operatofi[+ 4] F
gives simply a + wg)Q = Q2 for both components of the

the expectation value of j2gR?]~* over the radial part of the
wave function. The quantum numbjgiis mostly%/, in the lower
levels, and the expectation valiRuagR?] ~!Lis the end-over-
end rotational constafg of the complex. In reality, the parity
splitting for the states witlwg ~ 0 is somewhat smaller than
4B. Functions withwg = 0 are not coupled and would not show
any parity splitting ifwg were an exact quantum number. It is
not exact, however, so even the wave functions Withl ~ 1
have a small component withg = 0 and show a small parity
splitting. For|Q| = 3/, the splittings are even smaller, and they
are proportional tod — %,)(J + ¥,)(J + 3/,) as pointed out by
Dubernet and Hutso#?. They are due to a higher order effect
of the Coriolis coupling operatdj ji/(ZuABRZ). No splittings
are shown foQ| > 3, because they are hardly visible at the
accuracy of our calculations.

parity-adapted basis. The step-up and step-down operators rrom the levels withl = 1,, 31, 5/, and 7/, we extracted

J§f]i cannot couple basis functions witts and —wg because

rotational constants of the complex. First, we averaged the

this quantum number has integer values and the step-up ancenergies of the andf states to remove the effect of the parity

step-down operators shiftg only by +1. Hence, only the terms
ix J*/(2uasR?) couple basis functions withwf,weQ) =
(M2, 0,1,) and 5, 0, =1/,). The coupling matrix elements
are

splitting. We note that thé dependence of the energy levels
originates from the termjj + jg)2 — 2(a + Jg)*J + J/(2uasR?)
in the Hamiltonian. After removal of the parity splitting, the
energy contribution of this term i@ + 1) — Q?|[RuagR?] 0]
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Figure 6. Density distributions from full 2D calculations far= 4/, and |Q| = ¥, (upper six panels) and far = %, and|Q| = 3/, (lower two
panels). These distributions are the squares of the rovibronic wave functions, integrated over the electronic coordinates and the overall rotation
angles of the complexy( 3, ¢). The corresponding energy levels are listed in Table 3.
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TABLE 6: Expectation Values and Spectroscopic Parameters in crmi from Fits of the Rotational Levels

|wal |ws| Vi Vs ROA) Bay Eo B D
Q="

Y, 0 0 0 3.26 0.09013 —337.70 0.08972 8.7 1077

Y, 1 0 0 3.25 0.09045 —325.12 0.09912 3.5% 10°°

Y 0 0 1 3.38 0.08466 —293.56 0.08423 1.64 10°©

1, 1 0 1 3.36 0.08541 —279.47 0.08511 2.04 10°

Y, 0 0 2 3.51 0.07946 —254.28 0.07901 1.5 10°©

1, 1 0 2 3.47 0.08114 —237.30 0.08263 4.88 10°©

Y 0 0 3 3.61 0.07564 —219.96 0.07526 1.79 10°©

1, 0 1 0 3.47 0.07973 —215.24 0.07970 1.2% 10°¢

Y 1 0 3 3.53 0.07863 —198.31 0.09134 2.1% 104

1, 1 1 0 3.46 0.08052 —197.05 0.08286 —1.34x 10°¢

Y 0 0 4 3.67 0.07392 —187.17 0.07366 1.68 1076

1, 0 1 1 3.62 0.07446 —182.51 0.07491 2.26 10°

Y, 1 0 4 3.61 0.07593 —161.63 0.07881 1.9% 105

Q| =%,

Y, 1 0 0 3.26 0.08995 —327.05 0.08071 —3.23x 10°°

1Y, 2 0 0 3.25 0.09050 —289.67 0.09506 1.0& 1075

Y, 1 0 1 3.54 0.07765 —286.21 0.07573 4,99 10°¢

3/, 0 0 0 3.75 0.06968 —276.25 0.07090 —2.48x 10°°

1, 1 0 2 3.49 0.08054 —243.58 0.08050 2.36 10°°

1, 2 0 1 3.44 0.08237 —241.76 0.08178 —2.07x 10°°

3/, 0 0 2 3.91 0.06396 —223.62 0.06368 —2.34x 10°©

1, 1 1 0 3.55 0.07718 —202.86 0.07468 1.6% 10°©

1, 1 1 1 3.54 0.07789 —200.58 0.07242 —8.87x 107

1, 2 0 2 3.48 0.08088 —198.29 0.07459 —1.40x 104

3/, 0 0 3 4.00 0.06187 —182.05 0.05964 —-1.12x 10

1, 1 0 4 3.62 0.07532 —165.58 0.07159 —1.99x 10°©
The band origingy, end-over-end rotational constargsand potentials with an appropriate analytic form of the anisotropy,
centrifugal distortion constant® presented in Table 6 were we present diabatic and adiabatic potentials including-spin
obtained by a fit of the levels with = /5, 3/5, °, and’/, for orbit coupling. These were very useful in understanding the
each internal state with the formula characteristics of the bound levels calculated. We further

elucidated these characteristics by a series of 1D calculations

— 2 22
EQIQ)=E +BUJ(J+1)—-Q)-DUJ+1)-Q )(13) on the hindered rotation or bending motion of the HCI monomer

with the CHHCI distanceR fixed at values ranging from 2.5
From the wave function of each state we also calculated the to 5.5 A. The ground state of the complex turned out to have a
expectation value ofR and the rotational constarB,, = T-shaped geometry witBRO~ 3.2 A, and we identified the
RuasR? 0 In Table 6 we compare these results. Especially associated stretch and bending excited levels. We also found a
for the levels withwg = 0 we find that theB value from the fit progression of states with a linear geometry of the complex at
of the rotational levels agrees very well with the expectation substantially higher energy witfRO~ 3.7—4.0 A. Previous,
valueBay. The agreement is somewhat less good for the levels more approximate, calculations with empirfZabr ab initic?3
with Jwg| = 1. In the fit with eq 13 it is assumed that the oentials led to a ground state of linear geometry; the T-shaped
complex s a linear rotor. Hence, we may conclude that the statesqiaag \yere not predicted in earlier work. Stretch and bending
with ws = 0 behav_e asa Imgar rotor, whereas the states with vibrational frequencies, rotational constants, and parity splittings
|| = 1 do not. This conclusion is quite remarkable, however, were obtained from the usual spectroscopic fits of the levels
because the complex has clearly a T-shaped geometry, even in . .
the states withog = 0. The same conclusion was reached on calculated for different values c_Jf the rotatlona_l constants were
the basis of the parity splittings. also computed from egpecta’uon values. I.t is noteworthy_ that
In the rotational constants and the value<Rifin Table 6 the CHHCI complex displays several series of states with a
one observes a marked distinction between the T-shaped and-shaped geometry and very similar internal motion, with
linear structures. All of the states wi2| = ¥/, have a relatively ~ different values of|wg|. This quantum numbemws is the
large rotational constant an®values between 3.2 and 3.5 A. component of rotational angular momentiyg of the HCI
They are T-shaped. F¢€| = 3/, we find T-shaped states with  monomer on the GtHCI bond axis. The series of levels with
lwal & Y- and linear states withwa| ~ %-. The latter have a  wg ~ 0 includes the ground state and has the remarkable feature

substantially smaller rotational constéitand a value of R that the states possess a T-shaped structure, but display several
between 3.7 and 4.0 A. The valueBffor the linear geometry  of the properties of a linear open-shell molecule, such as a

agrees fairly well with the value of Dubernet and Hut$én. relatively large parity splitting proportional tb+ Y.

Conclusion
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