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With the use of recently computed diabatic potential energy surfaces (J. Chem. Phys.2001, 115, 3085) a full
ab initio calculation was made of the bound energy levels of the Cl(2P)-HCl van der Waals complex for
total angular momentumJ ) 1/2, 3/2, 5/2, and7/2. The dissociation energyD0 of the complex was found to be
337.8 cm-1 for J ) 1/2 and|Ω| ) 1/2, whereΩ is the projection ofJ on the Cl-HCl bond axis. The complex
is T-shaped in the ground state and in a series of stretch and bending excited states, with a van der Waals
bond lengthR of ∼3.2 Å. A series of states with linear geometry were also found, however, with|Ω| ) 3/2
andR≈ 3.9 Å, the lowest of which has a binding energy of 276.1 cm-1. The rovibronic levels were analyzed
with the help of one-dimensional calculations withR fixed at values ranging from 2.5 to 5.5 Å and the use
of diabatic and adiabatic potential energy surfaces that both include the important spin-orbit coupling. The
states of linear geometry are in qualitative agreement with previous work based on more approximate potential
energy surfaces; the T-shaped states of considerably lower energy were not predicted earlier. Analysis of the
rotational structure and parity splitting of the rovibronic levels leads to the remarkable observation that this
T-shaped complex shows several features typical of a linear open-shell molecule.

Introduction

A chemical reaction that has been studied intensively over
more than a decade, both by theory1-10 and by experiment,11-20

is the hydrogen exchange reaction between a free Cl atom in
its ground2P state and the HCl molecule. A weakly bound
Cl(2P)-HCl van der Waals complex is present in the entrance
and exit channels of this reaction, which is believed to influence
the rate and outcome of the reaction.21 Theoretical studies of
the bound states of this complex were reported by Dubernet
and Hutson22 and, more recently, by Zdanska et al.23 Dubernet
and Hutson based their studies on diabatic model potentials,
which they constructed by combining empirical Ar-HCl, Ar-
Cl, and Ar-Ar potentials with the electrostatic interactions
between the quadrupole moment of the Cl(2P) atom and the
dipole and quadrupole of HCl. Zdanska and co-workers
calculated adiabatic potential energy surfaces at the multiref-
erence averaged coupled-pair functional (MRACPF) level and
reported bound states calculated with and without inclusion of
an angular first-derivative non-adiabatic coupling term. In their
calculations they fixed the orientation of the intermolecular
vectorR between the Cl nucleus and the HCl center of mass,
which corresponds approximately, but not exactly, to a neglect
of the overall rotation of the complex.

Accurate two-dimensional (2D) adiabatic and diabatic po-
tential energy surfaces for the Cl(2P)-HCl system were recently
reported by Kłos et al.24 They were obtained from ab initio spin-
restricted coupled cluster calculations with single, double, and
noniterative triple excitations [RCCSD(T)], combined with
multireference configuration interaction including single and
double excitations (MRCISD) to obtain the non-adiabatic
coupling coefficient. In the present work we re-expand these
diabatic potentials in the form that was derived in refs 22 and
25-27 and apply them in a detailed study of the bound states

of the Cl(2P)-HCl van der Waals complex. The method for
the calculation of the van der Waals levels is described under
Bound State Calculations. Also, the spin-orbit interaction in
the Cl(2P) atom is included in this calculation, with the same
assumption as in refs 22 and 23 that the spin-orbit coupling
constant is not affected by the weak interaction with the HCl
molecule. We obtain a full solution of the 2D problem with all
six electronic states of Cl(2P)-HCl that correlate asymptotically
to the 2P3/2 and 2P1/2 spin-orbit states of the Cl atom. To
understand the character of the bound states on the multiple
potential surfaces, we also perform a set of rigid bender
calculations with the Cl-HCl distanceR frozen, to a range of
values. Under Results we discuss and compare our findings with
previous work. In the final section, our conclusions are
summarized.

Bound State Calculations

The bound states of Cl(2P)-HCl are most conveniently
calculated in a two-angle embedded body-fixed (BF) frame with
thez-axis along the vectorR from the Cl atom to the HCl center
of mass. This frame is related to a space-fixed (SF) frame by a
rotation over the angles (â,R), which are the polar angles ofR
with respect to the SF frame. The Cl-H bond axisr has the
polar angles (θ,φ) with respect to the BF frame;θ is the angle
betweenr andR, which is zero for the linear Cl-HCl geometry.
Because the H-Cl vibration has a much higher frequency than
the vibrations of the Cl-HCl complex, we froze the H-Cl bond
length r and used the experimental value for the ground state
rotational constantb0 ) 10.44019 cm-1 of HCl. The ab initio
potential was calculated for the equilibrium bond lengthre )
1.275 Å. In this representation the Hamiltonian for the nuclear
motion on the multiple diabatic potential surfaces reduces to
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whereµAB ) 17.732802 u is the reduced mass of the complex.
The operatorsλ̂ and Ŝ represent the orbital and spin angular
momenta of the Cl atom andĵA ) λ̂ + Ŝ the total atomic angular
momentum. The splitting between the groundjA ) 3/2 and
excitedjA ) 1/2 spin-orbit states of Cl(2P) is DSO ) 882.4 cm-1

and the atomic spin-orbit coupling constant isA ) -2DSO/3
) -588.27 cm-1. The operatorĵB is the rotational angular
momentum of the HCl molecule andĴ the total angular
momentum of the complex. The diabatic states of the Cl(2P)-
HCl complex that correlate with the corresponding states of the
Cl(2P) atom are labeled with the quantum numbers (λ,µ), where
λ ) 1 andµ ) -1, 0, 1 is the projection ofλ̂ on the BFz-axis
R. The potentialsVµ′,µ(R,θ,φ) are the diabatic interaction
potentials in a two-angle embedded BF frame as described in
ref 27. The expansion of these diabatic potentials is given by
the following expression:

The functionsCl,m(θ,φ) are Racah normalized spherical harmon-
ics. Note that only functions withm ) µ - µ′ occur in the
expansion. The same formula (eq 2) with identical expansion
coefficients holds in a three-angle embedded BF frame withφ

) 027 and the potentialsVµ′,µ(R,θ) ≡ Vµ′,µ(R,θ, 0) do not depend
on the angleφ in this frame.

Accurate ab initio results for the diabatic potential surfaces
Vµ′,µ(R,θ) are given in ref 24. To express their anisotropy in
the form of eq 2, we made new fits of the original ab initio
data. For the diabatic potential surfacesV0,0 andV1,1 ) V-1,-1

we fitted theR dependence to an Esposti-Werner28 function
for each value ofθ on the grid of 13 angles used in the ab
initio calculations. Subsequently, we obtained the anisotropic
expansion coefficientsVlB

µ′,µ(R) in eq 2 for a givenR from a
least-squares fit of the values for the 13 angles to a set of
spherical harmonicsClB,m(θ,0) with m ) µ - µ′ ) 0 andlB )
0, 1, ..., 8. For the diabatic potentialV-1,1 we made a new global
fit of the ab initio data similar to the fit made in ref 24, but
with the anisotropy expanded in spherical harmonicsCl,m(θ,0)
with m ) 2 instead of Legendre polynomialsPl

0(cos θ). The
latter are, of course, equal toCl,m(θ,0) with m) 0, so this seems
only a subtle difference, but a correct description of the
anisotropy27 according to eq 2 requires thatm is fixed atµ -
µ′ ) 2. The short-range contribution toV-1,1 was written as

where

with m ) 2 andl ) lB ranging from 2 to 9. The exponentsd(θ)
and b(θ) were expanded in Legendre polynomialsPl

0(cos θ)
with l ) 0, 1, 2, just as in ref 24. The long-range contribution
was represented as a damped expansion in powers ofR-1

The electrostatic multipole-multipole contributions start atn
) 4, the induction and dispersion contributions start atn ) 6,
and fn(bR) is a Tang-Toennies damping function.29 The
coefficientsCnl with n ) 4 andn ) 5 were not varied in the fit.
They were determined from the quadrupole moment of Cl(2P)
and the dipole and quadrupole of HCl according to the long-
range formulas in ref 27. Also for the diabatic coupling potential
V0,1 we made a new global fit, with the same procedure as
applied in the fit ofV-1,1. In this case, the exponentsd(θ) and
b(θ) in eq 3 were chosen to be independent ofθ, and we used
spherical harmonicsCl,m(θ,0) with m ) µ - µ′ ) 1 in the fits
of eqs 4 and 5, withl ) lB ranging from 1 to 6. Finally, we
computed the expansion coefficientsVlB

-1,1(R) andVlB

0,1(R) for lB
values up to 12 according to eq 2 by Gauss-Legendre numerical
integration over the fitted potentialsV-1,1 and V0,1. These
coefficients obey the relationsVlB

-1,1(R) ) VlB

1,-1(R) and VlB

0,1(R)
) VlB

0,-1(R) ) -VlB

1,0(R) ) -VlB

-1,0(R) (see ref 27), so that all
diabatic potentialsVµ′,µ(R,θ,0) with µ′,µ ) -1, 0, 1 are known.

Because of the large spin-orbit coupling in the Cl(2P) atom
it is most convenient for the interpretation of the results to use
a coupled atomic basis set

for which the spin-orbit term in the Hamiltonianλ̂‚Ŝ ) (ĵA
2 -

λ̂2 - Ŝ2)/2 is diagonal. The expression〈λ,µ;S,σ|jA,ωA〉 is a
Clebsch-Gordan coefficient. Becauseλ ) 1 andS ) 1/2, one
finds thatjA ) 1/2 and 3/2. The two-angle embedded BF basis
for the complex reads

The spherical harmonicsYjB,ωB(θ,φ) describe the rotation of the
HCl monomer with respect to the dimer BF frame and the
symmetric rotor functionsDM,Ω

(J) (R,â, 0)* the overall rotation of
the complex. The exact quantum numbersJ, M, λ, andS are
omitted from the short notation on the left-hand side. The
angular momentum components on the BFz-axis obey the
relationΩ ) ωA + ωB. The radial basis functions|n〉 ) øn(R)
are Morse oscillator type functions defined in ref 30. Formulas
for the matrix elements of the Hamiltonian over this basis are
given in ref 27.

In addition toJ andM, the parity of the states of the complex
under inversionı̂ is a good quantum number. The effect of
inversion on the basis is

This property is used to construct a parity-adapted basis

with parity p. It is customary to define the spectroscopic parity
ε, which is related to the total parity byε ) p(-1)J-S. Functions

Ĥ )
-p2

2µABR

∂
2

∂R2
R +

(ĵA + ĵB)2 - 2(ĵA + ĵB)‚Ĵ + Ĵ2

2µABR
2

+

b0ĵB
2 + Aλ̂‚Ŝ + ∑

µ′,µ
|λ,µ′〉 Vµ′,µ(R,θ,φ) 〈λ,µ| (1)

Vµ′,µ(R,θ,φ) ) 〈λ,µ′|V̂|λ,µ〉 ) ∑
lB

ClB,µ-µ′(θ,φ)VlB

µ′,µ(R) (2)

Vsr(R,θ) ) G(R,θ) exp[d(θ) - b(θ)R] (3)

G(R,θ) ) ∑
l)|m|

lmax

∑
i)0

3

gilR
iCl,m(θ,0) (4)

Vlr(R,θ) ) ∑
n)4

10

∑
l)|m|

n-4

fn(b(θ)R)CnlR
-nCl,m(θ,0) (5)

|jAωA〉 ≡ |(λS)jAωA〉 ) ∑
µ,σ

|λ,µ〉|S,σ〉〈λ,µ;S,σ| jA,ωA〉 (6)

|n,jA,ωA,jB,ωB,Ω〉 ) |n〉 [2J + 1
4π ]1/2

| jAωA〉YjB,ωB
(θ,φ) DM,Ω

(J) (R,â,0)* (7)

ı̂|n, jA,ωA, jB,ωB,Ω〉 ) (-1)λ-jA+J|n,jA,-ωA,jB,-ωB,-Ω〉 (8)

|n,jA,ωA,jB,ωB,|Ω|, p〉 ) 2-1/2 [|n,jA,ωA,jB,ωB,Ω〉 +

p(-1)λ-jA+J|n,jA,-ωA,jB,-ωB,-Ω〉] (9)
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with parities ε ) 1 and ε ) -1 are denoted withe and f,
respectively.
Results

The bound states of the complex were obtained from a full
diagonalization of the Hamiltonian matrix. Calculations were
performed forJ up to7/2 inclusive. This does not provide all of
the bound states. A simple extrapolation of the lowest energy

level for eachJ with a second-order polynomial shows that there
might still be bound states forJ ) 123/2. The levels were
converged to within 10-4 cm-1 with an angular basis truncated
at jBmax ) 15 and a radial basis withnmax ) 14. Test calculations
with jBmax ) 20 gave levels that did not deviate by>10-6 cm-1

from the jBmax ) 15 results.
It is important for understanding the bound levels of Cl(2P)-

Figure 1. DiabaticjA ) 3/2, |ωA| ) 3/2 (a), jA ) 3/2, |ωA| ) 1/2 (b), andjA ) 1/2, |ωA| ) 1/2 (c) and adiabatic (d-f) potential energy surfaces including
spin-orbit coupling for the Cl(2P)-HCl complex. Surfaces a, d, b, and e are given relative to the energy of the2P3/2 state of the Cl atom and
surfaces c and f relative to the energy of the2P1/2 state.
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HCl that one considers also diabatic and adiabatic potential
energy surfaces with the large spin-orbit coupling term
included. Diabatic states|jAωA〉 including spin-orbit coupling
are defined, which correlate to the atomic states|jAωA〉 ≡
|(λS)jAωA〉 of eq 6. The corresponding diabatic potentials
Vω′A,ωA

(jA) (R,θ) ≡ 〈jAω′A|V̂ + ĤSO|jAωA〉 are the matrix elements of
the operator

The spin-orbit term is constant and diagonal in this basis. The
diagonal elements of the matrixVω′A,ωA

(jA) are plotted in Figure
1a-c. Adiabatic potentials are obtained by diagonalization of
this matrix and plotted in Figure 1d-f. Similar pictures of their
empirical model potential are shown by Dubernet and Hutson.22

A few of the most relevant cuts through our potential surfaces
are presented in Figure 2.

One-Dimensional (1D) Calculations.Before we discuss the
full 2D calculation of the bound states, it is useful to consider
the hindered internal rotation or bending motion of the HCl
monomer in the complex in a series of calculations with fixed
Cl-HCl distanceR. We made such calculations for values of
R ranging from 2.5 to 5.5 Å in steps of 0.1 Å; the energy levels
for J ) 1/2 andJ ) 3/2 are shown in Figure 3. An analysis of

the wave functions of the lowest states of paritye is given in
Tables 1 and 2, forR ) 3.2 and 3.9 Å, respectively. Many of
the curves in Figure 3 nearly coincide forJ ) 1/2 and3/2, which
indicates that the corresponding bound states forJ ) 3/2 are
similar to those forJ ) 1/2, except for an additional quantum
of overall rotation. In Tables 1 and 2 one can see that|Ω| is a
good approximate quantum number, also forJ ) 3/2, and the
nearly coinciding curves correspond to states with|Ω| ≈ 1/2.
The expansion coefficients of these states are indeed very
similar; compare, for example, in Table 1 the lowest state for
J ) 1/2 with the lowest state forJ ) 3/2 and the second state for
J ) 1/2 with the third state forJ ) 3/2. In Table 2 the first and
second states forJ ) 1/2 are very similar to the second and
fourth states forJ ) 3/2, respectively. The curves in Figure 3
that occur forJ ) 3/2, but not forJ ) 1/2, refer to states with
|Ω| ≈ 3/2.

An interesting feature observed in Figure 3 is that the lowest
energy curve forJ ) 3/2 and |Ω| ) 3/2 exhibits two minima,
for R ) 3.2 and 3.9 Å. ForR ) 3.2 Å the lowest level withJ
) 1/2 and|Ω| ) 1/2 is the ground state, whereas forR ) 3.9 Å
the ground state hasJ ) 3/2 and |Ω| ) 3/2. From the potential
surface cuts presented in Figure 2a forθ ) 0° and in Figure 2b
for 90° one can see that the ground state at 3.2 Å corresponds
to a minimum in the lowest diabatic potential withjA ) 3/2 and

Figure 2. Cuts through the diabatic potential energy surfaces including spin-orbit coupling. Cuts a and b are forθ ) 0° and 90°, respectively;
cuts c and d are forR ) 3.2 and 3.9 Å, respectively.

V̂ + ĤSO ) ∑
µ′,µ

|λ,µ′〉 Vµ′,µ(R,θ) 〈λ,µ| + Aλ̂‚Ŝ (10)
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|ωA| ) 1/2 at the T-shaped structure (cf. Figure 1b). It is this
diabat that causes the secondary minimum atθ ) 90° in the
lowest adiabatic potential energy surface shown in Figure 1d.
In Table 1 one observes that the ground state atR ) 3.2 Å
indeed has mostlyjA ) 3/2 and|ωA| ) 1/2 character. The ground
state atR ) 3.9 Å corresponds to the minimum in the lowest
diabat withjA ) 3/2 and |ωA| ) 3/2 at the linear structure (see
Figure 1a). This diabat is responsible for the minimum atθ )
0° in the lowest adiabatic potential energy surface shown in
Figure 1d. In Table 2 one observes that the ground state atR )
3.9 Å indeed has mostlyjA ) 3/2 and |ωA| ) 3/2 character.

A striking difference between our results and the results of
Dubernet and Hutson22 is that the ground state with the T-shaped

structure andR ≈ 3.2 Å was not found in their calculation.
Their lowest adiabatic surface including spin-orbit coupling
does not display a minimum for the T-shaped geometry. In their
lowest spin-free adiabat they do find a local minimum at the
T-shaped structure, but its relative depth in comparison to the
global minimum at the linear structure is smaller than in our
case (cf. ref 24). Hence, their ground-state resembles the state
of linear geometry that we observe aroundR ) 3.9 Å. Zdanska
et al.23 did obtain a secondary minimum for the T-shaped
structure in their lowest adiabat including spin-orbit coupling,
but apparently this minimum is not sufficiently deep to support
the T-shaped ground state that we find.

Inspection of the curves in Figure 3 shows an avoided
crossing aroundR ) 3.6 Å in the lower curves forJ ) 3/2, |Ω|
) 3/2. The analysis of the bound states in Tables 1 and 2 shows
that this avoided crossing is accompanied by a switch of|ωA|
) 3/2 character atR ) 3.9 Å, which favors the linear Cl-HCl
structure, to|ωA| ) 1/2 character atR ) 3.2 Å, which favors
the T-shaped structure. The approximate quantum numberjA is
mostly 3/2 for all of the low-lying states, because of the large
gap between the2P3/2 and2P1/2 spin-orbit levels in the Cl atom.
Still, substantial admixture of thejA ) 1/2 component is observed
at R ) 3.2 Å. It is somewhat surprising that|ωA| is a nearly
good quantum number atR ) 3.2 Å, but not atR ) 3.9 Å.
This can be understood by looking at the potential surface cuts
for R ) 3.2 Å in Figure 2c, where thejA ) 1/2 and jA ) 3/2
curves come close forθ around 90° but the|ωA| ) 1/2 and|ωA|
) 3/2 curves withjA ) 3/2 stay far apart forθ ≈ 90°. In Figure
2d one can see that atR ) 3.9 Å the jA ) 1/2 curve stays far
above thejA ) 3/2 curves, and the latter stay close together for
|ωA| ) 1/2 and |ωA| ) 3/2 over the wholeθ range. The diatom
rotational quantum numberjB is definitely not a good quantum
number; hence, the rotation of HCl is considerably hindered.
Surprisingly, one can clearly distinguish states with evenjB and
states with oddjB at R ) 3.2 Å. Also, |ωB| is a nearly good
quantum number atR ) 3.2 Å but not atR ) 3.9 Å. The
exception is the ground state atR ) 3.9 Å, which we discussed
before. It has a linear geometry andωB ≈ 0. This state can be

Figure 3. Bound state energies calculated withR fixed at different
values. Solid lines with crosses correspond toJ ) 1/2 and dashed lines
with circles toJ ) 3/2.

TABLE 1: Energies and Wave Functions from 1D Calculations withR Fixed at 3.2 Åa

J ) 1/2 J ) 3/2

E (cm-1) -362.8373 -350.5348 -217.4902 -203.1811 -362.7005 -351.7134 -350.2129 -315.3444
∆E (cm-1) 0.2813 -0.0068 0.2870 -0.0063 0.5625 0.0003 -0.0139 0.0000

jA ) 1/2 0.146 0.146 0.135 0.137 0.146 0.145 0.146 0.147
jA ) 3/2 0.855 0.854 0.865 0.864 0.855 0.855 0.854 0.853
|ωA| ) 1/2 0.949 0.952 0.959 0.961 0.949 0.948 0.952 0.955
|ωA| ) 3/2 0.051 0.048 0.041 0.039 0.051 0.052 0.048 0.045
|Ω| ) 1/2 1.000 1.000 1.000 1.000 1.000 0.027 0.973 0.000
|Ω| ) 3/2 0.000 0.000 0.000 0.000 0.000 0.973 0.027 1.000

jB ) 0 0.569 0.007 0.051 0.005 0.569 0.018 0.007 0.000
jB ) 1 0.046 0.744 0.381 0.058 0.046 0.744 0.744 0.009
jB ) 2 0.299 0.055 0.024 0.598 0.299 0.048 0.055 0.825
jB ) 3 0.036 0.155 0.424 0.023 0.036 0.152 0.155 0.059
jB ) 4 0.037 0.025 0.021 0.264 0.037 0.026 0.025 0.086
jB ) 5 0.011 0.010 0.082 0.019 0.011 0.009 0.010 0.016

evenjB 0.906 0.091 0.109 0.894 0.906 0.095 0.091 0.914
odd jB 0.094 0.909 0.891 0.106 0.094 0.905 0.909 0.086

|ωB| ) 0 0.939 0.018 0.951 0.014 0.939 0.044 0.019 0.000
|ωB| ) 1 0.061 0.941 0.049 0.952 0.061 0.938 0.941 0.018
|ωB| ) 2 0.000 0.041 0.000 0.034 0.000 0.018 0.040 0.943
|ωB| ) 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039

a The energiesE refer to the levels of paritye; ∆E ) Ef - Ee is the parity splitting. The contributions of the basis functions with different
quantum numbers are sums of squared coefficients.
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considered as a Renner-Teller system, with|ωB| being the
bending angular momentum that for linear triatomic molecules
is commonly denotedl.

Further understanding of these results can be obtained from
a view of the angular density distributions plotted in Figures 4
and 5. These distributions are obtained by integrating the
absolute square of the rovibronic wave functions over all
coordinates except the angleθ. They contain contributions of
the different electronic spin-orbit components (jA,|ωA|), which
are marked separately. It is clear that the Cl atom and the HCl
diatom already have a strong interaction atR ) 3.9 Å, but this
affects mostly the diatom by more or less fixing its orientation
(jB is not a good quantum number anymore). The splitting
between thejA ) 1/2 and jA ) 3/2 spin-orbit states of the
Cl(2P) atom is almost completely preserved. ForR ) 3.2 Å
there is also a strong change in the spin-orbit levels of the Cl
atom andjA is no longer a good quantum number. Instead, the
projections|ωA| and|ωB| on the intermolecular axisR become
good quantum numbers, which shows the more rigid character
of the complex.

Figure 4 demonstrates again that the complex forms in the
T-shaped geometry atR ) 3.2 Å. In the ground state, withωB

≈ 0 (upper left panel), the diatom orientation is more or less
fixed aroundθ ) 90° by a mixture of basis functions with
mainly jB ) 0 and jB ) 2 (see Table 1). In the first excited
state, with|ωB| ≈ 1 (upper right panel), the diatom orientation
is equally well localized. We mentioned already that the system
at R ) 3.2 Å has a strong preference for even or odd values of
jB. This is reminiscent of the para/ortho distinction in H2

complexes, but quite unexpected as HCl is a strongly hetero-
nuclear diatom. Even values ofjB occur in the ground state and
odd values in the first excited state. Figure 4 also shows that
the second and third excited states are bending excited states.
ForR) 3.9 Å (Figure 5), the diatom orientation is clearly more
delocalized. This figure contains also the lowest two states with
J ) 3/2 and |Ω| ) 3/2. The first one has a linear structure, and
the second is delocalized over the linear and T-shaped geom-
etries.

Full Calculation. We performed full two-dimensional (2D)

calculations for the intermolecular degrees of freedom by
introducing a radial basis of 15 functionsøn(R), with nmax )
14, as defined in ref 30. The nonlinear parametersRe ) 3.60
Å, De ) 430 cm-1, and ωe ) 34.5 cm-1 in this basis were
optimized by energy minimizations with smaller values ofnmax.
The rovibronic levels and parity splittings forJ ) 1/2, 3/2, 5/2,
and7/2 are given in Tables 3 and 4. Also, the main character of
the corresponding wave functions is indicated in these tables.
As in the calculations withR fixed, |Ω| is a nearly good quantum
number and we can sort the energy levels with respect to|Ω|.

In agreement with the 1D calculations withR fixed at R )
3.2 Å we find that the ground state corresponds to the second
diabat withjA ) 3/2 and |ωA| ) 1/2. The density plots forJ )
1/2, |Ω| ) 1/2 in Figure 6 show that it has a T-shaped geometry.
The binding energyD0 of the complex is 337.8 cm-1 for J )
1/2, |Ω| ) 1/2, and spectroscopic paritye. Note that the lowest
adiabatic potential including the spin-orbit coupling displays
a local minimum withDe ) 377 cm-1 at the T-shaped geometry
with Re ) 3.2 Å, and the zero-point level in the calculations
with R fixed at 3.2 Å lies at-362.8 cm-1. The global minimum
in this potential with well depthDe ) 439 cm-1 occurs for the
linear geometry atRe ) 3.9 Å. The first state with a linear Cl-
HCl geometry (see Figure 6, lower two panels) is found forJ
) 3/2, |Ω| ) 3/2, and lies at-276.1 cm-1. This is in good
agreement with the ground state energy of-273.7 cm-1 that
Dubernet and Hutson22 calculated with their empirical model
potential. Note that this potential does not support the T-shaped
ground state structure, however, which we find much lower in
energy. Also, the ab initio potential of Zdanska et al.23 does
not support the T-shaped ground state structure and, moreover,
the well depth and binding energy of the complex are consider-
ably smaller in this potential.

We observe in Figure 6 that the angular distributions are in
good agreement with the results of the 1D calculations
represented in Figures 4 and 5. The states withJ ) 1/2 and|Ω|
) 1/2 in Figure 6 correspond to the T-shaped states computed
at R ) 3.2 Å and the states withJ ) 3/2 and|Ω| ) 3/2 in Figure
6 to the states of linear geometry found forR ) 3.9 Å. The
states with energiesE ) -293.65 and-279.43 cm-1 in Figure

TABLE 2: Energies and Wave Functions from 1D Calculations withR Fixed at 3.9 Åa

J ) 1/2 J ) 3/2

E (cm-1) -255.5538 -227.7538 -193.6043 -305.0698 -255.4367 -231.2392 -227.5604 -182.8490
∆E (cm-1) 0.1383 -0.0013 0.1492 0.0000 0.2766 0.0002 -0.0028 0.0000

jA ) 1/2 0.013 0.018 0.010 0.001 0.013 0.015 0.018 0.019
jA ) 3/2 0.987 0.983 0.990 0.999 0.987 0.985 0.983 0.981
|ωA| ) 1/2 0.599 0.774 0.693 0.069 0.600 0.657 0.774 0.847
|ωA| ) 3/2 0.400 0.226 0.308 0.931 0.399 0.343 0.226 0.154
|Ω| ) 1/2 1.000 1.000 1.000 0.000 1.000 0.002 0.998 0.000
|Ω| ) 3/2 0.000 0.000 0.000 1.000 0.000 0.998 0.002 1.000

jB ) 0 0.445 0.006 0.281 0.220 0.445 0.052 0.006 0.002
jB ) 1 0.272 0.679 0.294 0.410 0.271 0.573 0.679 0.008
jB ) 2 0.224 0.192 0.173 0.245 0.224 0.169 0.192 0.790
jB ) 3 0.055 0.107 0.198 0.085 0.055 0.156 0.107 0.134
jB ) 4 0.003 0.015 0.046 0.027 0.003 0.045 0.015 0.059
jB ) 5 0.001 0.001 0.006 0.009 0.001 0.005 0.001 0.005

evenjB 0.672 0.213 0.501 0.495 0.673 0.266 0.214 0.852
odd jB 0.328 0.787 0.499 0.505 0.327 0.734 0.786 0.148

|ωB| ) 0 0.597 0.012 0.689 0.930 0.598 0.338 0.013 0.003
|ωB| ) 1 0.403 0.767 0.309 0.069 0.402 0.655 0.767 0.013
|ωB| ) 2 0.000 0.221 0.001 0.001 0.000 0.007 0.221 0.836
|ωB| ) 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.148

a The energiesE refer to the levels of paritye; ∆E ) Ef - Ee is the parity splitting. The contributions of the basis functions with different
quantum numbers are sums of squared coefficients.
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6 are clearly stretch fundamentals, which have no counterpart
in the 1D calculations withR fixed. The states with energiesE
) -215.32 and-197.01 cm-1 in Figure 6 are bending
fundamentals in nice correspondence with the third and fourth
states in Figure 4.

It is clear from Figure 6 that the Cl-HCl complex has two
series of states with a T-shaped geometry and|Ω| ) 1/2 with
very similar internal motion, one withωB ≈ 0 that includes the
ground state at-337.80 cm-1 and one with|ωB| ≈1 that starts
at the slightly higher energy of-325.07 cm-1. In Table 3 one
observes two similar series of levels for|Ω| ) 3/2, one with
|ωB| ≈ 1 starting at-326.93 cm-1 and one with|ωB| ≈ 2
starting at-289.53 cm-1. Comparison of the energy levels from
the 2D calculation in Table 3 to the levels from the 1D
calculation in Table 1 shows that for each of these series of
states the stretch zero-point energy of the complex is∼ 25 cm-1.
In the harmonic approximation this corresponds to a stretch
frequency of∼50 cm-1. In the full 2D calculation we could
identify stretch progressions with quantum numbers up toVs )
4. Fits of these progressions to the usual formula with anhar-
monic corrections

yield the spectroscopic parameters listed in Table 5. Two sets
of such parameters are given for the T-shaped states with|Ω|
) 1/2, one for the states withωB ≈ 0 and one for the states with
|ωB| ≈ 1. The third set of parameters refers to the states with
|Ω| ) 3/2 and|ωB| ≈ 2. All values ofDe from these fits agree
well with the corresponding energies of the 1D calculations at
R ) 3.2 Å. From a comparison of Tables 3 and 2 we extracted
a stretch zero-point energy of 29 cm-1 for the states of linear
geometry with |Ω| ) 3/2 and we could identify a stretch
progression with the first and second excited states lying at 52.6
and 94.2 cm-1, respectively, above the linear ground state at
-276.14 cm-1. A fit of this progression to eq 11 yields a set of
parameters for the states of linear geometry withωB ≈ 0. Again,
the value ofDe from the fit agrees well with the lowest energy
of the 1D calculation atR ) 3.9 Å, as it should. The
corresponding 2D and 1D bending fundamentals of the T-shaped
structure in Tables 3 and 1 do not show a simple stretch zero-
point energy shift, nor do the levels in Table 3 show a clear
stretch progression on top of the bending excited levels.

The parity splittings of the levels withJ ) 1/2, 3/2, 5/2, and7/2
are presented in Table 4. They agree very well with the results
of the fixed-R calculation at 3.2 Å in Table 1. The largest
splittings occur for|Ω| ) 1/2, and they are nicely proportional
to J + 1/2. This simple linear dependence onJ + 1/2 is well-

Figure 4. Wave functions squared from 1D calculations atR ) 3.2 Å for J ) 1/2, integrated over all coordinates exceptθ. The contributions of
the electronic spin-orbit states (jA, |ωA|) are indicated byO for (3/2, 3/2), / for (3/2, 1/2), and× for (1/2, 1/2). The energy levels are listed in Table 1.

E(Vs) ) De + ωe(Vs + 1
2) - ωexe(Vs + 1

2)2
+ ωeye(Vs + 1

2)3

(11)
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known for λ doubling in linear molecules,31 and it was also
found in Cl(2P)-HCl by Dubernet and Hutson.22 For the lowest

levels withωB ) 0 the proportionality constant is on the order
of the end-over-end rotational constant (see below). It is

Figure 5. Wave functions squared from 1D calculations atR ) 3.9 Å, integrated over all coordinates exceptθ, for J ) 1/2 (upper four panels) and
for J ) 3/2 (lower two panels). The contributions of the spin-orbit states (jA, |ωA|) are indicated byO for (3/2, 3/2), / for (3/2, 1/2), and× for (1/2,
1/2). The energy levels are listed in Table 2.
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remarkable, however, that theωB ) 0 states for which we find
this type of parity splitting in Cl(2P)-HCl are not linear but
have a T-shaped geometry. Another characteristic feature is that
the parity splitting is much smaller for the levels with|ωB| )
1. Also, these smaller splittings are proportional toJ + 1/2,
except for the second stretch overtone where some|ωA| ) 3/2
character mixes into the mainly|ωA| ) 1/2 state.

All of these parity splitting characteristics can be understood
by considering the Hamiltonian in eq 1 and the parity-adapted
basis in eq 9. From the latter it follows that the energy difference
between functions withe andf parities is caused by a coupling
between the basis components with (ωA,ωB,Ω) and
(-ωA,-ωB,-Ω). The term in the Hamiltonian that is responsible
for this coupling is the Coriolis coupling operator-2(ĵA + ĵB)‚Ĵ/
(2µABR2) and, in particular, the step-up and step-down terms
with ĵA

+Ĵ+ and ĵA
-Ĵ- in this operator. The operator [ĵA

z + ĵB
z]Ĵz

gives simply (ωA + ωB)Ω ) Ω2 for both components of the
parity-adapted basis. The step-up and step-down operators
ĵB
(Ĵ( cannot couple basis functions withωB and-ωB because

this quantum number has integer values and the step-up and
step-down operators shiftωB only by(1. Hence, only the terms
ĵA
( Ĵ(/(2µABR2) couple basis functions with (ωA,ωB,Ω) )

(1/2, 0, 1/2) and (-1/2, 0, -1/2). The coupling matrix elements
are

and they cause a first-order splitting between the functions of
eandf parities, which would otherwise be degenerate. Equation
12 shows that this splitting should indeed be proportional toJ
+ 1/2, with a proportionality constant that is 2(jA + 1/2) times
the expectation value of [2µABR2]-1 over the radial part of the
wave function. The quantum numberjA is mostly3/2 in the lower
levels, and the expectation value〈[2µABR2]-1〉 is the end-over-
end rotational constantB of the complex. In reality, the parity
splitting for the states withωB ≈ 0 is somewhat smaller than
4B. Functions withωB * 0 are not coupled and would not show
any parity splitting ifωB were an exact quantum number. It is
not exact, however, so even the wave functions with|ωB| ≈ 1
have a small component withωB ) 0 and show a small parity
splitting. For|Ω| ) 3/2 the splittings are even smaller, and they
are proportional to (J - 1/2)(J + 1/2)(J + 3/2) as pointed out by
Dubernet and Hutson.22 They are due to a higher order effect
of the Coriolis coupling operatorĵA

( Ĵ(/(2µABR2). No splittings
are shown for|Ω| > 3/2 because they are hardly visible at the
accuracy of our calculations.

From the levels withJ ) 1/2, 3/2, 5/2, and 7/2 we extracted
rotational constants of the complex. First, we averaged the
energies of thee andf states to remove the effect of the parity
splitting. We note that theJ dependence of the energy levels
originates from the term [(ĵA + ĵB)2 - 2(ĵA + ĵB)‚Ĵ + Ĵ2]/(2µABR2)
in the Hamiltonian. After removal of the parity splitting, the
energy contribution of this term is [J(J + 1) - Ω2]〈[2µABR2]-1〉.

TABLE 3: Lowest Bound States ofe Parity for J ) 1/2 up to
7/2a

|ωA| |ωB| vb vs J ) 1/2 J ) 3/2 J ) 5/2 J ) 7/2

|Ω| ) 1/2
1/2 0 0 0 -337.7954 -337.6639 -337.3530 -336.8627
1/2 1 0 0 -325.0662 -324.7655 -324.2682 -323.5761
1/2 0 0 1 -293.6461 -293.5216 -293.2286 -292.7672
1/2 1 0 1 -279.4261 -279.1678 -278.7404 -278.1451
1/2 0 0 2 -254.3481 -254.2233 -253.9404 -253.4994
1/2 1 0 2 -237.2569 -237.0075 -236.5930 -236.0137
1/2 0 0 3 -220.0136 -219.8837 -219.6032 -219.1720
1/2 0 1 0 -215.3239 -215.2127 -214.9421 -214.5123
1/2 1 0 3 -198.2722 -197.9996 -197.5585 -196.9534
1/2 1 1 0 -197.0106 -196.7601 -196.3435 -195.7608
1/2 0 0 4 -187.2257 -187.0933 -186.8135 -186.3863
1/2 0 1 1 -182.5825 -182.4678 -182.2048 -181.7934
1/2 1 0 4 -161.6095 -161.3869 -161.0068 -160.4702

|Ω| ) 3/2
1/2 1 0 0 -326.9326 -326.5281 -325.9594
1/2 2 0 0 -289.5309 -289.0560 -288.3921
1/2 1 0 1 -286.1012 -285.7228 -285.1937
3/2 0 0 0 -276.1414 -275.7858 -275.2856
1/2 1 0 2 -243.4595 -243.0580 -242.4980
1/2 2 0 1 -241.6363 -241.2266 -240.6514
3/2 0 0 1 -223.5215 -223.2030 -222.7569
1/2 1 1 1 -202.7512 -202.3781 -201.8561
1/2 1 0 3 -200.4761 -200.1142 -199.6072
1/2 2 0 2 -198.1769 -197.7996 -197.2593
3/2 0 0 2 -181.9647 -181.6557 -181.2231
1/2 1 0 4 -165.4738 -165.1164 -164.6162

|Ω| ) 5/2
1/2 2 0 0 -292.9108 -292.3186
1/2 2 0 1 -250.0382 -249.4693
1/2 3 0 0 -231.1916 -230.5332
1/2 2 0 2 -214.2311 -213.6980
1/2 2 0 3 -184.7843 -184.2657
1/2 3 0 1 -182.8027 -182.1994
1/2 2 1 0 -161.2700 -160.7185

|Ω| ) 7/2
1/2 3 0 0 -236.0136
1/2 3 0 1 -192.5597

a Energies in cm-1 relative to the energy of Cl(2P3/2) and HCl; Vb

andVs are bending and stretch quantum numbers.

TABLE 4: Parity Splittings ∆E ) Ef - Ee in cm-1

|ωA| |ωB| vb vs J ) 1/2 J ) 3/2 J ) 5/2 J ) 7/2

|Ω| ) 1/2
1/2 0 0 0 0.2754 0.5508 0.8261 1.1012
1/2 1 0 0 -0.0071 -0.0144 -0.0222 -0.0306
1/2 0 0 1 0.2564 0.5127 0.7689 1.0248
1/2 1 0 1 -0.0065 -0.0129 -0.0192 -0.0252
1/2 0 0 2 0.2245 0.4489 0.6730 0.8967
1/2 1 0 2 -0.0031 -0.0062 -0.0095 -0.0129
1/2 0 0 3 0.1919 0.3836 0.5749 0.7657
1/2 0 1 0 0.2557 0.5115 0.7672 1.0230
1/2 1 0 3 0.0044 0.0067 0.0076 0.0076
1/2 1 1 0 -0.0036 -0.0075 -0.0118 -0.0166
1/2 0 0 4 0.1773 0.3544 0.5312 0.7075
1/2 0 1 1 0.2158 0.4280 0.6564 0.8709
1/2 1 0 4 0.0281 0.0553 0.0809 0.1046

|Ω| ) 3/2
1/2 1 0 0 0.0003 0.0010 0.0024
1/2 2 0 0 0.0000 0.0000 0.0000
1/2 1 0 1 0.0001 0.0004 0.0009
3/2 0 0 0 -0.0001 -0.0005 -0.0012
1/2 1 0 2 0.0001 0.0003 0.0008
1/2 2 0 1 0.0001 0.0002 0.0005
3/2 0 0 1 0.0000 0.0000 0.0000
1/2 1 1 1 0.0002 0.0006 0.0015
1/2 1 0 3 0.0004 0.0016 0.0039
1/2 2 0 2 0.0018 0.0044 0.0073
3/2 0 0 2 0.0035 -0.0091 -0.0080
1/2 1 0 4 0.0004 0.0017 0.0041

TABLE 5: Spectroscopic Parameters in cm-1 from Fits of
the Stretch Progressions

|ωB| |Ω| De ωe ωexe ωeye

0 1/2 -362.6657 51.5924 4.0430 0.2754
1 1/2 -349.4424 49.8261 2.2280 0.0957
2 3/2 -315.1439 52.5612 2.6273 0.1378
0 3/2 -306.6001 63.6830 5.5315

x(jA(jA + 1) - ωA(ωA ( 1))(J(J + 1) - Ω(Ω ( 1)) ×
〈[2µABR

2]-1〉 ) (jA + 1
2)(J + 1

2)〈[2µABR
2]-1〉 (12)
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Figure 6. Density distributions from full 2D calculations forJ ) 1/2 and |Ω| ) 1/2 (upper six panels) and forJ ) 3/2 and |Ω| ) 3/2 (lower two
panels). These distributions are the squares of the rovibronic wave functions, integrated over the electronic coordinates and the overall rotation
angles of the complex (R, â, φ). The corresponding energy levels are listed in Table 3.
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The band originsE0, end-over-end rotational constantsB, and
centrifugal distortion constantsD presented in Table 6 were
obtained by a fit of the levels withJ ) 1/2, 3/2, 5/2, and7/2 for
each internal state with the formula

From the wave function of each state we also calculated the
expectation value ofR and the rotational constantBav )
〈[2µABR2]-1〉. In Table 6 we compare these results. Especially
for the levels withωB ) 0 we find that theB value from the fit
of the rotational levels agrees very well with the expectation
valueBav. The agreement is somewhat less good for the levels
with |ωB| ) 1. In the fit with eq 13 it is assumed that the
complex is a linear rotor. Hence, we may conclude that the states
with ωB ) 0 behave as a linear rotor, whereas the states with
|ωB| ) 1 do not. This conclusion is quite remarkable, however,
because the complex has clearly a T-shaped geometry, even in
the states withωB ) 0. The same conclusion was reached on
the basis of the parity splittings.

In the rotational constants and the values of〈R〉 in Table 6
one observes a marked distinction between the T-shaped and
linear structures. All of the states with|Ω| ) 1/2 have a relatively
large rotational constant and〈R〉 values between 3.2 and 3.5 Å.
They are T-shaped. For|Ω| ) 3/2 we find T-shaped states with
|ωA| ≈ 1/2 and linear states with|ωA| ≈ 3/2. The latter have a
substantially smaller rotational constantB and a value of〈R〉
between 3.7 and 4.0 Å. The value ofB for the linear geometry
agrees fairly well with the value of Dubernet and Hutson.22

Conclusion
Without consideration of the spin-orbit coupling the Cl(2P)-

HCl complex has three asymptotically degenerate electronic
states. With the use of the accurate ab initio adiabatic and
diabatic intermolecular potential energy surfaces that were
recently computed for these states,24 we calculated the bound
levels of this complex forJ ) 1/2, 3/2, 5/2, and 7/2 with the
inclusion of spin-orbit coupling. After a fit of the diabatic

potentials with an appropriate analytic form of the anisotropy,
we present diabatic and adiabatic potentials including spin-
orbit coupling. These were very useful in understanding the
characteristics of the bound levels calculated. We further
elucidated these characteristics by a series of 1D calculations
on the hindered rotation or bending motion of the HCl monomer
with the Cl-HCl distanceR fixed at values ranging from 2.5
to 5.5 Å. The ground state of the complex turned out to have a
T-shaped geometry with〈R〉 ≈ 3.2 Å, and we identified the
associated stretch and bending excited levels. We also found a
progression of states with a linear geometry of the complex at
substantially higher energy with〈R〉 ≈ 3.7-4.0 Å. Previous,
more approximate, calculations with empirical22 or ab initio23

potentials led to a ground state of linear geometry; the T-shaped
states were not predicted in earlier work. Stretch and bending
vibrational frequencies, rotational constants, and parity splittings
were obtained from the usual spectroscopic fits of the levels
calculated for different values ofJ; the rotational constants were
also computed from expectation values. It is noteworthy that
the Cl-HCl complex displays several series of states with a
T-shaped geometry and very similar internal motion, with
different values of|ωB|. This quantum numberωB is the
component of rotational angular momentumjB of the HCl
monomer on the Cl-HCl bond axis. The series of levels with
ωB ≈ 0 includes the ground state and has the remarkable feature
that the states possess a T-shaped structure, but display several
of the properties of a linear open-shell molecule, such as a
relatively large parity splitting proportional toJ + 1/2.
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TABLE 6: Expectation Values and Spectroscopic Parameters in cm-1 from Fits of the Rotational Levels

|ωA| |ωB| vb vs 〈R〉 (Å) Bav E0 B D

|Ω| ) 1/2
1/2 0 0 0 3.26 0.09013 -337.70 0.08972 8.70× 10-7

1/2 1 0 0 3.25 0.09045 -325.12 0.09912 3.53× 10-5

1/2 0 0 1 3.38 0.08466 -293.56 0.08423 1.64× 10-6

1/2 1 0 1 3.36 0.08541 -279.47 0.08511 2.04× 10-5

1/2 0 0 2 3.51 0.07946 -254.28 0.07901 1.50× 10-6

1/2 1 0 2 3.47 0.08114 -237.30 0.08263 4.88× 10-6

1/2 0 0 3 3.61 0.07564 -219.96 0.07526 1.79× 10-6

1/2 0 1 0 3.47 0.07973 -215.24 0.07970 1.27× 10-6

1/2 1 0 3 3.53 0.07863 -198.31 0.09134 2.11× 10-4

1/2 1 1 0 3.46 0.08052 -197.05 0.08286 -1.34× 10-6

1/2 0 0 4 3.67 0.07392 -187.17 0.07366 1.60× 10-6

1/2 0 1 1 3.62 0.07446 -182.51 0.07491 2.26× 10-5

1/2 1 0 4 3.61 0.07593 -161.63 0.07881 1.91× 10-5

|Ω| ) 3/2
1/2 1 0 0 3.26 0.08995 -327.05 0.08071 -3.23× 10-5

1/2 2 0 0 3.25 0.09050 -289.67 0.09506 1.06× 10-5

1/2 1 0 1 3.54 0.07765 -286.21 0.07573 4.99× 10-6

3/2 0 0 0 3.75 0.06968 -276.25 0.07090 -2.48× 10-5

1/2 1 0 2 3.49 0.08054 -243.58 0.08050 2.30× 10-5

1/2 2 0 1 3.44 0.08237 -241.76 0.08178 -2.07× 10-5

3/2 0 0 2 3.91 0.06396 -223.62 0.06368 -2.34× 10-6

1/2 1 1 0 3.55 0.07718 -202.86 0.07468 1.67× 10-6

1/2 1 1 1 3.54 0.07789 -200.58 0.07242 -8.87× 10-6

1/2 2 0 2 3.48 0.08088 -198.29 0.07459 -1.40× 10-4

3/2 0 0 3 4.00 0.06187 -182.05 0.05964 -1.12× 10-4

1/2 1 0 4 3.62 0.07532 -165.58 0.07159 -1.99× 10-6

E(J,|Ω|) ) E0 + B(J(J + 1) - Ω2) - D(J(J + 1) - Ω2)2

(13)
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